
Twofish Technical Report #5

Impossible differentials in Twofish

Niels Ferguson∗

October 19, 1999

Abstract

We show how an impossible-differential attack, first applied to DEAL by Knudsen, can be applied to
Twofish. This attack breaks six rounds of the 256-bit key version using 2256 steps; it cannot be extended
to seven or more Twofish rounds.

Keywords: Twofish, cryptography, cryptanalysis, impossible differential, block cipher, AES.
Current web site: http://www.counterpane.com/twofish.html

1 Introduction

Twofish is one of the finalists for the AES [SKW+98,
SKW+99]. In [Knu98a, Knu98b] Lars Knudsen used
a 5-round impossible differential to attack DEAL.
Eli Biham, Alex Biryukov, and Adi Shamir gave the
technique the name of ‘impossible differential’, and
applied it with great success to Skipjack [BBS99].
In this report we show how Knudsen’s attack can
be applied to Twofish. We use the notation from
[SKW+98] and [SKW+99]; readers not familiar with
the notation should consult one of these references.

2 The attack

Knudsen’s 5-round impossible differential works for
any Feistel cipher where the round function is in-
vertible. Twofish has some additional rotations in
the datapath which make things a bit more compli-
cated. It turns out that these extra rotations do not
complicate the attack, but only its description. To
avoid these complications we first rewrite Twofish as
a pure Feistel cipher.

2.1 Twofish as a pure Feistel cipher

As mentioned in [SKW+98, section 7.9] and
[SKW+99, section 7.9.3] we can rewrite Twofish to
be a pure Feistel cipher. We will demonstrate how
this is done. The main idea is to save up all the ro-
tations until just before the output whitening, and
apply them there. We will use primes to denote the
values in our new representation. We start with the
round values:

R′r,0 = ROL(Rr,0, b(r + 1)/2c)
R′r,1 = ROR(Rr,1, b(r + 1)/2c)
R′r,2 = ROL(Rr,2, br/2c)
R′r,3 = ROR(Rr,3, br/2c)

To get the same output we update the rule to com-
pute the output whitening.

C0 = ROR(Rn,2, bn/2c)⊕K4

C1 = ROL(Rn,3, bn/2c)⊕K5

C2 = ROR(Rn,0, b(n+ 1)/2c)⊕K6

C3 = ROL(Rn,1, b(n+ 1)/2c)⊕K7

∗Counterpane Internet Security, Inc.

1



where n is the number of rounds. Of course, n = 16
for the full cipher but we will be attacking reduced-
round versions and that would affect the rotation
amounts.

We now have to adjust the round function to the
new representation. The input to the round func-
tion of round r consists of (R′r,0, R

′
r,1). At the be-

ginning of the round function we undo the rotates
to get the original (Rr,0, Rr,1), and apply the orig-
inal F -function to get (Fr,0, Fr,1). We then apply
appropriate rotates to the outputs, namely:

F ′r,0 = ROL(Fr,0, br/2c)
F ′r,1 = ROR(Fr,1, b(r + 2)/2c)

We can now write the update rule:

R′r+1,0 = ROL(Rr+1,0, b(r + 2)/2c)
= ROL(ROR(Rr,2 ⊕ Fr,0, 1), b(r + 2)/2c)
= ROL(Rr,2, br/2c)⊕ ROL(Fr,0, br/2c)
= R′r,2 ⊕ F ′r,0

R′r+1,1 = ROR(Rr+1,1, b(r + 2)/2c)
= ROR(ROL(Rr,3, 1)⊕ Fr,1, b(r + 2)/2c)
= R′r,3 ⊕ ROR(Fr,1, b(r + 2)/2c)
= R′r,3 ⊕ F ′r,1

R′r+1,2 = R′r,0

R′r+1,3 = R′r,1

As we can see from these formulas, the combining
function used to mix the output of the round func-
tion and the right half is now a simple xor.

All in all we can replace the one-bit rotations in
Twofish by round-dependent rotations at the input
and output of the round function, and by some suit-
able rotations just before the output whitening.

To make it easier to follow the differentials through
the cipher we make one more change. Instead of
having a swap after each round, we apply the round
functions alternating from left to right and from
right to left. This is the representation that we will
use for the rest of this paper. If the number of rounds
is even we need a swap just before the output whiten-
ing, but we will ignore this as it does not affect any
of the attacks.

2.2 The impossible differential

We will now look at a particular differential for five
rounds. The xor input difference (written as two 64-
bit quantities) is of the form (0, α) for some nonzero
α, and the output difference after 5 rounds is also

(0, α). We can draw the following conclusions: the
difference after round 1 (0, α), the difference after
round 4 is (0, α), the difference after round 2 is (β, α)
for some nonzero β, and the difference after round
3 is (γ, α) for some nonzero γ. We trivially get that
β = γ, but more interesting is the output difference
of the round function in the third round. As the
difference in the right half after round 2 is equal to
the difference in the right half after round 3, we con-
clude that the output difference of the round func-
tion in the third round must be zero. As the input
difference to the round function in the third round is
nonzero and the round function is bijective, we get
a contradiction. We conclude that the differential
(0, α) 7→ (0, α) is a 5-round impossible differential.

2.3 Finding the last round key

To use this impossible differential we search for
plaintext pairs that exhibit a 6-round differential of
the form (0, α) 7→ (δ, α) for any α 6= 0.
Our first task is to find pairs of this form. Fix an
8-byte value A, and let Bi take on all 264 possi-
ble 8-byte values. Encrypt each of the plaintexts
(A,Bi) to produce (Ci, Di), and sort them by the
value Bi⊕Di. Any pair of encryptions that has the
same Bi ⊕ Di produces a difference of the correct
form. As there are 2127 pairs and a 64-bit restric-
tion, we expect to get about 263 pairs with the right
form of differential.
If we ignore the output whitening for a moment,
we can now try each possible round key for the last
round with each of the differentials that we found,
and compute what the differential would be after
the fifth round. We know that this cannot be of the
form (0, α), so any key value that produces this dif-
ference after five rounds must be wrong. We keep
track of which key values we have determined are
wrong until the key space is sparse enough to apply
other methods.
Each 6-round differential of the form (0, α) 7→ (δ, α)
eliminates about one in 264 of the possible keys for
the last round, so a single structure of 264 plain-
texts that generates 263 of these differentials will re-
duce the key space by about one bit. We can of
course generate many more structures to generate
more suitable differential pairs.

2.4 128-bit keys

To make this attack work for 128-bit keys we have
to arrange these computations in a proper way; oth-
erwise we end up decrypting 264 ciphertexts for one

2



round for each of the 2128 possible keys of the last
round, which is obviously more work than an ex-
haustive search.

The best way we see to arrange this is to guess
the 64-bit S-box key S. For the two ciphertexts
of the differential pair we decrypt part of the last
round, stopping at the point where the round keys
get added in. We now know that adding the round
key to these two outputs is not allowed to produce
a specific xor-differential. We assume that we can
generate the set of disallowed round keys very fast
in constant time (on average).

All in all we have to compute the F ′-function (i.e. F
without the key additions) of the last round about
2128 times, and have to generate the forbidden set
of round keys 2127 times to get a 1-bit reduction
in the key space. The remaining 2127 keys can be
exhaustively searched. With a bit of luck this will
be marginally faster than an exhaustive key search
over all 2128 keys as the attack requires a total of
2128 + 6 · 2127 computations of the round function
whilst the exhaustive key search requires 6·2128 com-
putations of the round function plus the generation
of the round keys through the key schedule.

The output whitening completely destroys this at-
tack, as we now need to guess both the S-box key
and 64 bits of the whitening key to get any data.
Effectively we have to guess the entire cipher key.
Even after this 128-bit guess every differential pair
gives us only a 2−64 probability of eliminating that
key, whereas we could eliminate it with probability
nearly 1 if we just did a full trial encryption (which
of course corresponds to an exhaustive key search).

2.5 192-bit keys

For 192-bit keys the S-box key is 96 bits long. Us-
ing the same algorithm as in the 128-bit key we can
reduce the overall key space by 1 bit in 2160 steps.
Repeating the operation for a few more structures
gives us an overall complexity of about 2160 for the
entire attack.

Again, the output whitening makes this attack im-
possible. We have to guess 64 bits of the whitening
key in addition to the 96-bit S-box key before we
can even start to eliminate the round keys of the last
round. To halve the key space we have to compute
the F ′-function of the last round for 264 ciphertexts
for each of the 296+64 key guesses, which clearly ex-
ceeds the complexity of an exhaustive key search.

2.6 256-bit keys

For 256-bit keys the S-box key is 128 bits long. The
basic attack thus has an overall complexity of about
2192 steps.

Even with the whitening we can perform this attack.
All that is required is to guess 64 bits of the post-
whitening key. This brings the attack complexity
to 2256 steps, but as we mentioned before each step
might very well be faster than a single encryption.

We can also push the attack through one more round
without whitening. In the 7-round cipher we use
the 5-round impossible differential (α, 0) 7→ (α, 0)
in the middle five rounds. We look for differen-
tial pairs for the 7-round cipher that have the form
(α, ε) 7→ (α, δ). These can be generated by encrypt-
ing random plaintexts, and sorting them by the xor

of the first half of the plaintext with the first half
of the ciphertext. We guess the S-box key S (128
bits). We find out which of the round keys in the
first round would produce a difference after the first
round of (α, 0), and which of the round keys of the
last round produce a difference before the last round
of (α, 0). The cross product of these two sets can all
be eliminated from the set of possible round keys for
the first and last round. The probability of any dif-
ferential of the form (α, ε) 7→ (α, δ) eliminating any
one choice of the first and last round key is about
2−128. We therefore need 2128 plaintext/ciphertext
pairs with the appropriate differential. As a random
pair has a chance of 2−64 of matching the differen-
tial, we need 2192 pairs in total, which we can get
using 296 plaintext/ciphertext pairs.

All in all we do the following computations for each
choice of S-box keys: We compute the first and
last round of the cipher for 296 plaintext/ciphertext
pairs. We then take the 2128 pairs with the proper
differential and generate the set of forbidden round
keys for the first and last round. We hope that we
can implement each of these 2256 steps significantly
faster than the cipher itself. After these steps the
keyspace has been halved, and we can recover the
entire key by searching the remaining keyspace.

As discussed in [WKS+99] any pair of 64-bit round
keys (or whitening-key halves) has only about 117
bits of entropy. This outlaws some sets of the first
and last round keys already, but it does not seem to
speed up the attack in any way.

An alternative way of doing a 7-round attack is to
use the impossible differential (0, α) 7→ (0, α) in the
first five rounds. By guessing the S-box key and the
last round key (a total of 192 bits) we can decrypt
the last round. We can now mount the 6-round at-

3



tack using only 264 fast steps just like we did in the
128-bit key case as the S-box key is already known.
Again the fact that each pair of round keys has only
117 bits of entropy does not really help us as we are
not iterating over the remaining round keys but in-
stead are using 264 differentials to eliminate half of
the remaining keys space.
Neither of these extensions to seven rounds work
when whitening is present.

3 Conclusions

Without whitening, the impossible differential at-
tack on 6-round Twofish has complexity 2128 for 128-
bit keys (but is still faster than exhaustive search),
complexity 2160 for a 192-bit key, and complexity
2192 for a 256-bit key. We can also attack seven
rounds in 2256 steps for a 256-bit key, again without
whitening.
With whitening, the best impossible-differential at-
tack on Twofish is on six rounds, has complexity 2256

and works only for a 256-bit key. We see no way to
extend this attack to seven or more rounds.

References

[BBS99] Eli Biham, Alex Biryukov, and Adi
Shamir. Cryptanalysis of Skipjack re-
duced to 31 rounds using impossible
differentials. In Jacques Stern, edi-
tor, Advances in Cryptology—EURO-
CRYPT ’99, volume 1592 of Lecture

Notes in Computer Science. Springer-
Verlag, 1999.

[Knu98a] Lars R. Knudsen. DEAL—a 128-bit
block cipher. Technical report 151, De-
partment of Informatics, University of
Bergen, Norway, February 1998.

[Knu98b] Lars R. Knudsen. DEAL—a 128-bit
block cipher. In AES Round 1 Tech-
nical Evaluation CD-1: Documentation.
NIST, August 1998. See http://www.
nist.gov/aes.

[SKW+98] Bruce Schneier, John Kelsey, Doug
Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Twofish: A 128-bit
block cipher. In AES Round 1 Tech-
nical Evaluation CD-1: Documentation.
NIST, August 1998. See http://www.
nist.gov/aes.

[SKW+99] Bruce Schneier, John Kelsey, Doug
Whiting, David Wagner, Chris Hall, and
Niels Ferguson. The Twofish Encryption
Algorithm, A 128-Bit Block Cipher. Wi-
ley, 1999.

[WKS+99] Doug Whiting, John Kelsey, Bruce
Schneier, David Wagner, Niels Ferguson,
and Chris Hall. Further observations on
the key schedule of Twofish. Twofish
Technical Report 4, Counterpane Sys-
tems, March 1999. See http://www.
counterpane.com/twofish.html.

4


